Improving fuzzy cognitive maps learning through memetic particle swarm optimization

نویسندگان

  • Yiannis G. Petalas
  • Konstantinos E. Parsopoulos
  • Michael N. Vrahatis
چکیده

Fuzzy cognitive maps constitute a neuro-fuzzy modeling methodology that can simulate complex systems accurately. Although their configuration is defined by experts, learning schemes based on evolutionary and swarm intelligence algorithms have been employed for improving their efficiency and effectiveness. This paper comprises an extensive study of the recently proposed swarm intelligence memetic algorithm that combines particle swarm optimization with both deterministic and stochastic local search schemes, for fuzzy cognitive maps learning tasks. Also, a new technique for the adaptation of the memetic schemes, with respect to the available number of function evaluations per application of the local search, is proposed. The memetic learning schemes are applied on four real-life problems and compared with established learning methods based on the standard particle swarm optimization, differential evolution, and genetic algorithms, justifying their superiority.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Cognitive Maps Learning through Swarm Intelligence

A technique for Fuzzy Cognitive Maps learning, which is based on the minimization of a properly defined objective function using the Particle Swarm Optimization algorithm, is presented. The workings of the technique are illustrated on an industrial process control problem. The obtained results support the claim that swarm intelligence algorithms can be a valuable tool for Fuzzy Cognitive Maps l...

متن کامل

Recent Advances in Fuzzy Cognitive Maps Learning Using Evolutionary Computation Techniques

A recently proposed swarm intelligence technique for Fuzzy Cognitive Map learning is described. The technique employs the Particle Swarm Optimization algorithm to minimize a proper objective function, whose global minimizers correspond to suboptimal weight matrices of the Fuzzy Cognitive Map. New instances of an industrial test problem are studied, justifying the usefulness of the technique as ...

متن کامل

Fuzzy Cognitive Maps Learning using Memetic Algorithms

Memetic Algorithms (MAs) are proposed for learning in Fuzzy Cognitive Maps (FCMs). MAs are hybrid search schemes, which combine a global optimization algorithm and a local search one. FCM’s learning is accomplished through the optimization of an objective function with respect to the weights of the FCM. MAs are used to solve this optimization task. The proposed approach is applied to a well-est...

متن کامل

Enhanced Comprehensive Learning Cooperative Particle Swarm Optimization with Fuzzy Inertia Weight (ECLCFPSO-IW)

So far various methods for optimization presented and one of most popular of them are optimization algorithms based on swarm intelligence and also one of most successful of them is Particle Swarm Optimization (PSO). Prior some efforts by applying fuzzy logic for improving defects of PSO such as trapping in local optimums and early convergence has been done. Moreover to overcome the problem of i...

متن کامل

MMDT: Multi-Objective Memetic Rule Learning from Decision Tree

In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft Comput.

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2009